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Bragg processing using a volume hologram offers an alternative in optical image processing in contrast to Fourier-plane
processing. By placing a volume hologram near the object in an optical imaging setup, we achieve Bragg processing. In this
review, we discuss various image processing methods achievable with acousto-optic modulators as dynamic and program-
mable volume holograms. In particular, we concentrate on the discussion of various differentiation operations leading to
edge extraction capabilities.
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1. Introduction

Standard coherent optical image processing employs a Fourier
plane in a 4−f system[1]. Various image processing operations
are accomplished by the modification of the pupil in the
Fourier plane. An interesting alternative image processing tech-
nique can be performed when we place a thick hologram near
the object in an optical imaging setup[2,3]. Angular selectivity
of volume holograms through Bragg diffraction provides the
selection of spatial frequencies. We call such a technique
Bragg processing. Edge extraction is one of the most important
image operations in image processing[4,5]. S. Case was the first,
to the best of our knowledge, to demonstrate optical edge extrac-
tion using Bragg processing[3]. Balakshy pointed out the pos-
sibility of using acousto-optic interaction to perform spatial
filtering in 1984 and recently presented a short survey on the
use of acousto-optics for optical wavefront visualization[6,7].
Xia et al. for the first time, to the best of our knowledge, dem-
onstrated experimental Bragg diffraction image edge extraction
and pioneered image processing in an imaging system with an
acousto-optic modulator (AOM) as a programmable volume
hologram[8]. The system provides real-time programmable tun-
ing of spatial transfer functions by various parameters of the
AOM. Since then, a variety of optical systems using acousto-
optic Bragg processing for edge extraction have been reported.
Banerjee et al. employed two AOMs aligned along the x and y
directions to achieve mixed partial derivatives[9]. Cao et al.
employed two cascaded AOMs to achieve second-order partial
derivatives[10]. The tandem arrangement of two AOMs has
been investigated for expanding the possibilities of using

Bragg diffraction for high frequency modulation of optical
beams[11,12]. To develop more and diversified spatial-filtering
operations, Banerjee et al. also investigated techniques to com-
pute spatial transfer functions under a variety of physical situa-
tions[13]. Davis and Nowak performed operations similar to
those obtained with both the fractional Hilbert transform and
fraction derivative spatial-filtering operations[14]. Along the line
of image processing by acousto-optic Bragg processing, beam
shaping has been investigated[15–19]. The use of anisoptropic
Bragg diffraction to perform image edge extraction was first,
to the best of our knowledge, demonstrated by Voloshinov et
al. in 2002[20]. Some recent publications involving anisotropic
Bragg processing include the works in Refs. [21–27].
To have a self-contained review, in Section 2, we discuss some

of the fundamentals of acousto-optics, introducing some impor-
tant parameters of the AOM, and, in Section 3, we summarize
the Korpel–Poon multiple plane-wave theory. The presentation
in these two sections closely follows the book by Poon and
Kim[28], in that the reader will find some similar symbols, nota-
tions, and figures between this paper and the book. In Section 4,
we formulate the plane-wave transfer function of the AOM, on
which a light beam with an arbitrary profile is incident. The
transfer function is a central concept used in acousto-optic
image processing. In Section 5, we include some illustrative
examples on how to implement various operations in optical
computing, where partial derivative operations are realized. In
Section 6, we discuss a couple of state-of-the-art considerations
in Bragg processing that could enhance the processing capabil-
ities using AOMs. Finally, in the last section, wemake some con-
cluding remarks.
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2. Fundamentals of Acousto-Optics

In acousto-optics, we deal with the interaction between sound
and light. An AOM consists of a transparent acoustic medium,
such as dense glass. A piezoelectric transducer is bonded to the
acoustic medium to provide propagating sound waves into it.
When a sound wave of wavelength Λ propagates into the acous-
tic medium, it causes perturbations in the index of refraction,
which in turn modulates the laser beam traversing the acoustic
medium. Figure 1 shows the physical situation of the interaction
between sound and light.
There are a variety ways to explain the interaction between

sound and light. When we consider the interaction of plane
waves of light and sound, we assume that the length of the trans-
ducer L is being sufficiently wide so as to produce straight wave-
fronts as a plane wave of sound. Because plane waves have well-
defined momenta, we consider the plane-wave interaction of
sound and light as a collision of photon and phonon particles.
The laws of conservation of energy and momentum are among
the most fundamental laws of physics in the process of collision.
Denoting the wavevectors of the incident light, diffracted plane
waves of light and sound by k0, k�1, and K , respectively, and
assuming the sound wavefronts are approaching the incident
light, the law of conservation of momentum gives us

h̃k�1 = h̃k0 � h̃K , (1)

where h̃ = h=2π, and h is Planck’s constant. Simplifying Eq. (1),
we have

k�1 = k0 � K : (2)

The corresponding law of conservation of energy gives us
(after division by h̃)

ω�1 = ω0 � Ω, (3)

where ω0, Ω, and ω�1 are the frequencies of the incident light,
sound, and diffracted light. Equations (2) and (3) give us the so-
called upshifted interaction in acousto-optics. In Fig. 2(a), we
show the wavevector interaction diagram, and, in Fig. 2(b),
we present the experimental configuration. The experimental
configuration illustrates that the zeroth-order diffracted beam
is traveling along the same direction as the incident beam,
and the�1st-order diffracted beam is the beam with frequency
upshifted by the sound frequency Ω.
The two conservation laws can be employed again to give two

equations similar to Eqs. (2) and (3) if we exchange the direc-
tions of incident and diffracted light. With the so-called down-
shifted interaction in acousto-optics and corresponding to
Eqs. (2) and (3), we have

k−1 = k0 − K , (4)

and

ω−1 = ω0 −Ω, (5)

respectively. The subscript−1 indicates that the frequency of the
diffracted beam is downshifted by the sound frequency Ω.
Figures 3(a) and 3(b) illustrate Eqs. (4) and (5), respectively.
From Figs. 2(a) and 3(a), we note that the wavevector dia-

grams are closed for both cases of the interaction. As a result,
there can only be one critical incident angle, i.e., the Bragg angle,
such that plane waves of sound and light can interact. By
inspecting either Fig. 2(a) or 3(a), we find the Bragg angle ϕB as

sinϕB =
jKj
2jk0j

=
K
2k0

=
λ0
2Λ

, (6)

L

Sound wavefronts

Incident plane wave of light

Zeroth-order beam

Diffracted beam

Transparent acoustic medium

Piezoelectric
transducer of length 

Fig. 1. AOM illustrating diffraction of light by sound.

Fig. 2. Upshifted Bragg diffraction: (a) wavevector diagram and (b) experi-
mental configuration. Adapted from Ref. [28].

Fig. 3. Downshifted Bragg diffraction: (a) wavevector diagram and (b) exper-
imental configuration. Adapted from Ref. [28].
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where λ0 is the wavelength of light inside the acoustic medium.
However, in practice, sound–light interaction happens even
though the direction of incident light is not exactly at the
Bragg angle, as we do not have exact plane waves of sound.
The sound fields actually spread out with an angle approxi-
mately equal to Λ=L as they propagate into the medium. As
the width of the transducer decreases, the sound field will act
less and less like a single plane wave, and it is more appropriate
to consider an angular spectrum of plane waves, providing plane
waves of sound for the generation of multiple diffracted light
beams. In Fig. 4, we show the situation, where diffraction into
higher orders of light happens. We see that k�1 is generated
through the diffraction of k0 by K�1, k�2, the second diffracted
order of light is generated through the diffraction of k�1 byK�2,
and so on, where K±p (p = 0, ± 1, ± 2, : : : ) denotes the various
components of the plane-wave spectrum of the sound.
In addition to the Bragg angle of the AOM, there is another

important parameter called the Klein–Cook parameterQ, which
is defined as[28,29]

Q = 2πL
λ0
Λ2 : (7)

IfQ ≫ 1[28], the modulator is said to be operated in the Bragg
region, i.e., for any sound–light interaction to occur, light must
be incident at the Bragg angle, and the AOM is called a Bragg
cell. In the ideal Bragg regime, only two diffracted orders exist,
and Q would have to be infinity or L → ∞, giving only a single
sound plane wave for the acousto-optic interaction.

3. Korpel–Poon Multiple Plane-Wave Scattering Theory

In the previous section, we used the simple particle approach to
describe the necessary conditions for Bragg diffraction to occur.
Often, we are interested in knowing how the acousto-optic inter-
action process affects the amplitude distribution among the dif-
ferent diffracted beams. We shall adopt the Korpel–Poon
multiple plane-wave theory to understand this aspect, which
is summarized as follows[28,30]. In Fig. 5, we show a typical
2D rectangular sound column with plane-wave light incidence.
The Korpel–Poon equations can be used to describe the inter-
action between plane waves of sound and light[28]:

dψm�ξ�
dξ

= −j
α

2
e
−j12Qξ

h
ϕinc
ϕB

��2m−1�
i
ψm−1�ξ�

− j
α

2
e
j12Qξ

h
ϕinc
ϕB

��2m�1�
i
ψm�1�ξ�, (8)

where ψm�ξ� is the complex amplitude of the mth-order dif-
fracted plane wave of light in the direction ϕm =ϕinc � 2mϕB.
The boundary conditions for Eq. (8) are ψ0�ξ = 0� = ψ inc and
ψm�ξ = 0� = 0 for m ≠ 0. ξ = z=L is the normalized distance
inside the modulator, and ξ = 1 signifies the exit plane of the
modulator. ϕinc is the incident angle of the plane wave of ampli-
tude ψ inc. Finally, α is the peak phase delay given by

α = Ck0AL=2, (9)

where C is the strain-optic coefficient of the acoustic medium,
and A is the amplitude of sound, with the sound field given by
propagating wave A cos�Ωt − Kx�. Hence, α denotes the
strength of the sound amplitude. As a final note, all of the angles
are measured from the horizontal axis, and the convention for
angles is counterclockwise positive.
For a given value of α and Q, the solution to the infinite

coupled differential equation in Eq. (8) represents the contribu-
tions to the mth-order plane wave of light, ψm�ξ = 1�, owing to
the incident plane wave ψ inc at ϕinc.

4. Transfer Functions and Acousto-Optic Spatial
Filtering

Formany decades, the use of acousto-optics has been extensively
confined to signal processing. The reason is that AOMs are one-
dimensional (1D) devices, and the interaction between light and
sound is confined on a plane defined by the wavevectors of

Fig. 4. Multiple diffraction. Adapted from Ref. [28].

Fig. 5. AOM modeled by a column of sound of width L. Adapted from Ref. [28].
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sound and light. The use of AOMs operating in the Bragg regime
for 2D image processing was pioneered by Xia et al.[8], and the
research is built on the concept of acousto-optic transfer func-
tions first introduced by Poon and Chatterjee[31]. The concept of
transfer functions has also been used for the investigation of
beam shaping and beam distortion in thick gratings[16–18,32].
We consider upshifted Bragg diffraction with off-Bragg angle

incidence and limit to two diffracted orders. Hence, we let
ϕinc = −�1� δ�ϕB, where δ represents the deviation of the inci-
dent plane wave away from the exact Bragg angle. Equation (8)
becomes

dψ0�ξ�
dξ

= −j
α

2
e−jδQξ=2ψ1�ξ�, (10a)

and

dψ1�ξ�
dξ

= −j
α

2
ejδQξ=2ψ0�ξ�, (10b)

with the initial conditions ψ0�ξ = 0� = ψ inc, and ψ1�ξ = 0� = 0.
Equation (10) can be solved analytically, and the solutions are
given by the well-known Phariseau formula[33]:

ψ0�ξ� = ψ ince−jδQξ=4
�
cos ��δQ=4�2 � �α=2�2�1=2ξ

� jδQ
4

sin ��δQ=4�2 � �α=2�2�1=2ξ
��δQ=4�2 � �α=2�2�1=2

�
, (11a)

ψ1�ξ� = ψ incejδQξ=4
�
−j

α

2
sin ��δQ=4�2 � �α=2�2�1=2ξ
��δQ=4�2 � �α=2�2�1=2

�
: (11b)

These solutions represent the plane-wave solutions that are
due to oblique incidence and have been used for thick hologram
gratings[34]. By letting δ = 0, we can reduce these solutions to the
following well-known expressions for exact Bragg incidence:

ψ0�ξ� = ψ inc cos

�
αξ

2

�
, (12a)

and

ψ1�ξ� = −jψ inc sin

�
αξ

2

�
: (12b)

Equation (11) motivated Poon and Chatterjee[15,31] to define
the so-called plane-wave transfer function of the AOM. The
transfer functions of the zeroth-order beam and the first-order
beam are defined, respectively, as follows:

H0�δ� =
ψ0�ξ�jξ=1

ψ inc
= e−jδQ=4

�
cos ��δQ=4�2 � �α=2�2�1=2

� jδQ
4

sin ��δQ=4�2 � �α=2�2�1=2
��δQ=4�2 � �α=2�2�1=2

�
, (13a)

H1�δ� =
ψ1�ξ�jξ=1

ψ inc
= ejδQ=4

�
−j

α

2
sin ��δQ=4�2 � �α=2�2�1=2
��δQ=4�2 � �α=2�2�1=2

�
:

(13b)

These transfer functions show angular selectivity, and they
depend on the angle of incidence of the light incident on the
AOM. The transfer functions can be written as a function of spa-
tial frequency if we inspect the interaction geometry shown
in Fig. 6.
ψ inc�x 0�, ψ0�x 0�, and ψ1�x 0 0� are the incident beam, zeroth-

order diffracted beam, and first-order diffracted beam, respec-
tively. For instance, the incident beam can be decomposed into
multiple plane waves with different amplitudes propagating in
directions defined by ϕ 0 = δ × ϕB. The different amplitudes
are simply given by Eq. (13a). Since the spectrum of ψ inc�x 0� is

Ffψ inc�x 0�g = Ψinc�k 0
x�, (14)

where k 0
x is the spatial frequency associated with the x 0 coordi-

nate, we can write

k 0
x = k0 sin ϕ 0 ≈ k0ϕ 0 = k0 × δ × ϕB = πδ=Λ, (15)

where we have used the definition of the Bragg angle to arrive at
the last step of the equation. With Eq. (15), Eqs. (13a) and (13b)
become

H0�k 0
xΛ=π� = e−jk

0
xΛQ=4π

�
cos ��k 0

xΛQ=4π�2 � �α=2�2�1=2

� jk 0
xΛ
4π

sin ��k 0
xΛQ=4π�2 � �α=2�2�1=2

��k 0
xΛQ=4π�2 � �α=2�2�1=2

�
, (16a)

and

Fig. 6. Diffraction geometry for upshifted Bragg operation. Adapted from
Ref. [28].
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H1�k 0 0
x Λ=π� = ejk

0 0
x ΛQ=4π

�
−j

α

2
sin ��k 0 0

x ΛQ=4π�2 � �α=2�2�1=2
��k 0 0

x ΛQ=4π�2 � �α=2�2�1=2
�
,

(16b)

where k 0 0
x is the spatial frequency associated to the x 0 0 coordi-

nate. Now, for example, we can relate the input (incident) spec-
trum, Ψinc�k 0

x�, to the spectrum of the zeroth-order beam,
Ψ0�k 0

x�, as

Ψ0�k 0
x� = Ψinc�k 0

x�H0�k 0
xΛ=π�,

and the output beam profile for the zeroth-order diffracted beam
is

ψ0�x 0� = F−1fΨ0�k 0
x�g = F−1fΨinc�k 0

x�H0�k 0
xΛ=π�g: (17a)

A similar expression exists for the first-order diffracted beam:

ψ1�x 0 0� = F−1fΨ1�k 0 0
x �g = F−1fΨinc�k 0 0

x �H1�k 0 0
x Λ=π�g, (17b)

where the transfer function of the first-order beam is used.
Characteristics of jH0�k 0

x�j versus k 0
x and jH1�k 0 0

x �j versus k 0 0
x

for a typical AOM of Λ = 0.01mm with Q = 14 and Q = 28
are shown in Fig. 7. The solid lines and the dashed lines are
for the cases of α = 1.0π and α = 0.65π, respectively. We can
clearly observe the programmability of the AOM, as α is propor-
tional to the sound pressure, and Q is a function of the sound

frequency as Q = 2πL λ0
Λ2 = Lλ0

2πV2
s
Ω2, where Vs is the sound veloc-

ity in the acoustic medium.
Acousto-optic spatial filtering to the incident beam ψ inc�x 0� as

an input image is computed according to Eq. (17). Indeed, the
conversion from a Gaussian laser beam into flattop profiles has
been investigated using the transfer function of the first-order
beam, which has many important applications such as laser
fusion, laser printing, and optical data processing[15–19,32].
Figure 8 shows an example of flattop profile shaping of a
Gaussian laser beam upon Bragg diffraction for the first-order
diffracted beam in the far field.
The transfer function of the zeroth-order beam has been used

for the investigation of image processing. We place an AOM
near the object in an optical imaging setup, as shown in
Fig. 9. The object is placed on the input plane, and the output
plane is the image plane. The AOM is rotated by the Bragg angle,
i.e., ϕinc = −ϕB for upshifted interaction configuration. When
the AOM is turned off, i.e., α = 0, point A is imaged onto point
B. With AOM turned on, the first diffracted order appears, and
point B' is formed. In the experiment reported, the size of each of
the letter is about 2mm × 2mm. The focal length of the lens is
195 mm. α = 0.65π and Q = 28 are used for the AOM.
Figure 10 displays the first experimental results using an

AOM for image processing.

Fig. 7. Characteristics of |H0(kx
0
)| and |H1(kx

00
)| as a function of Q and α. (a) and

(b) Transfer function for the zeroth-order beam and the first-order beam at
Λ = 0.01 mm with Q = 14, respectively; (c) and (d) transfer function for the
zeroth-order beam and the first-order beam at Λ = 0.01 mm with Q = 28,
respectively.
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5. Illustrative Examples

In this section, we illustrate that AOMs can perform some of the
optical computing operations such as the important differentia-
tion operations.

5.1. First–order partial derivative

Let us assume that α=2 ≫ �k 0
x�maxΛQ=4π, where �k 0

x�max is the
maximum frequency of the input image, so Eq. (16a) becomes

H0�k 0
xΛ=π� = e−

jk 0xΛQ
4π �A� jBk 0

x�, (18)

where A = cos�α2� and B = ΛQ
4π

sin�α2�
α
2

. The exponential term is sim-

ply related to the spatial position shift of the diffracted beam
along the x 0 direction, and hence it is inconsequential to image
processing. Under this condition, Eq. (18) becomes

H0�k 0
xΛ=π� ≈ A� jBk 0

x: (19)

Assuming the incident beam is of two transverse dimensions,
i.e., ψ0�x 0,y 0�, Eq. (17a) now gives

ψ0�x 0,y 0� = F−1fΨinc�k 0
x ,k 0

y�H0�k 0
xΛ=π�g

= F−1fΨinc�k 0
x ,k 0

y��A� jBk 0
x�g

=
�
A − B

∂

∂x 0

�
ψ inc�x 0,y 0�: (20)

Note that we can only process the image in one dimension. If
we choose the correct value for α, such as α = π, 3π, 5π, we can
make A = 0. Under this condition, Eq. (20) becomes

ψ0�x 0,y 0� = −B
∂ψ inc�x 0,y 0�

∂x 0 , (21)

which is a pure differentiation operation. For the input image of
4mm × 4mm shown in Fig. 11(a), its magnitude spectrum is

Fig. 8. Flaptop beams obtained by the fine tuning of Q or α (alpha) through
H1(kx

0 0
Λ/π). Input laser beam is of the profile e−x

2

/2σ2. Reprinted with per-
mission from Ref. [16] © The Optical Society.

Fig. 9. Diffraction by AOM and image formation by lens.

Fig. 10. Experimental results on the output plane: (a) image of the object on
the output plane when the AOM is turned off; (b) images of the zeroth-order
(left) and the first-order (right) beams. Reprinted from Ref. [8]. Note that the
figures presented here are the actual images from the original printed article.
The PDF version of the figures provided by the publisher has been smeared.

Fig. 11. (a) Input square object, (b) magnitude spectrum of (a), and (c) intensity
of the zeroth-order light.
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shown in Fig. 11(b). Figure 11(c) shows the intensity of the first-
order light, illustrating the first-order derivative operation. In
the simulation, we have taken α = 3π, Q = 28, and Λ =
0.1mm for H0�k 0

xΛ=π�.

5.2 Higher–order partial derivative

To obtain higher derivative operations, we can, for example,
have two AOMs cascaded. The situation is shown in
Fig. 12(a). We use the zeroth-order light output of the first
modulator as the input to the second modulator. We then track
the zeroth-order light of the second modulator as a final output.
Mathematically, the output after the first AOM, from Eq. (20), is

ψ �1�
0 �x 0, y 0� =

�
A1 − B1

∂

∂x 0

�
ψ inc�x 0, y 0�: (22)

Similarly, the zeroth-order light after the second AOM is

ψ �2�
0 �x 0, y 0� =

�
A2 − B2

∂

∂x 0

�
ψ �1�
0 �x 0, y 0�, (23)

where A1, B1 and A2, B2 are the same functional forms as A and

B, which are the parameters of the first and second AOMs,
respectively. By substituting Eq. (22) into Eq. (23), we have

ψ �2�
0 �x 0, y 0�

=
�
B1B2

∂
2

∂x 02 − �A1B2 � A2B1�
∂

∂x 0 � A1A2

�
ψ inc�x 0, y 0�:

(24)

Note that if A1 and A2 are designed to be zero, we perform
a second-order partial derivative of the incident profile.
Figure 12(b) illustrates the result of taking the second-order
derivative operation, where the input image is the same as that
shown in Fig. 11(a) with parameters α = 3π, Q = 28, and
Λ = 0.1mm in H0�k 0

xΛ=π� used for the two AOMs.

5.3 Mixed partial derivative

The acousto-optic interaction is confined to two dimensions,
i.e., in the xz plane, as shown in Fig. 6. This limitation restricts
its applications to 1D image processing. We can extend the tech-
nique to 2D image processing by orienting the second AOM in
Fig. 12(a) at an angle with respect to the first AOM. For example,
the two AOMs can be aligned orthogonally to each other. If the
first AOM is confined in the xz plane with sound propagating
along the x direction, the second AOM can be confined in
the xy plane with the direction of propagating sound along
the y direction. Therefore, the zeroth-order light after the second
AOM is given by

ψ �2�
0 �x 0,y 0� =

�
A2 − B2

∂

∂y 0

�
ψ �1�
0 �x 0,y 0�, (25)

where ψ �1�
0 �x 0,y 0� is given by Eq. (22). By substituting Eq. (22)

into Eq. (25), we have

ψ �2�
0 �x 0,y 0� =

�
A2 − B2

∂

∂y 0

��
A1 − B1

∂

∂x 0

�
ψ inc�x 0,y 0�: (26)

Again, by choosing A1 = A2 = 0, we have

ψ �2�
0 �x 0,y 0� = B1B2

∂
2ψ inc�x 0,y 0�
∂y 0

∂x 0 , (27)

which accomplishes the mixed partial derivative. Figure 13

shows the intensity light jψ �2�
0 �x 0,y 0�j2 at the exit of the second

AOM for the input profile image of Fig. 11(a). Again, the sim-
ulation parameters for the two AOMs are α = 3π, Q = 28,
and Λ = 0.1mm.
Depending on applications, the first derivative gives a maxi-

mum at the edge location in image processing, and the second
derivative gives a zero at the edge location. The mixed derivative
provides corner detection commonly used in computer vision to
extract certain kinds of features and infer the contents of an
image. In addition, corner detection is often used in image regis-
tration and image recognition.

Fig. 12. (a) Cascaded AOM system and (b) intensity of the zeroth-order light
|ψ0

(2)(x
0
, y

0
)|2 at the exit of the cascade AOM system illustrating second-order

differentiation operation.
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6. State-of-the-Art Considerations

In the previous section, we found that the use of AOMs effec-
tively perform a variety of partial derivatives. In this section,
we discuss a couple of the latest considerations that would
enhance the capability of using AOM(s) for image processing
applications.

6.1 AOMs within a Mach–Zehnder interferometer

We consider two AOMs to be used within a Mach–Zehnder
interferometer, as shown in Fig. 14. In principle, the two
AOMs can be rotated arbitrarily along the xy plane. Irises 1
and 2 are used to select the different diffracted orders for display.
The upper arm and the lower arm of the interferometry can per-
form different processing, depending on the orientation of each
of the AOMs in the arm. The shutter has control if we have
processing operations by a single arm or by both arms of
the interferometer. Beamsplitter BS2 would then sum the

contributions from each arm. For example, by aligning one
AOM along the x direction on the upper arm of the interferom-
eter and another AOM along the y direction on the lower arm,
we accomplish the sum of two first derivative operations:

U�x,y� ∝
�

∂

∂x 0 �
∂

∂y 0

�
ψ inc�x 0,y 0�, (28)

if the zeroth diffracted orders are selected to be summed, where
U�x,y� is the total complex field reaching the CCD, as the con-
tribution from each arm performs first-order differentiation
operation according to Eq. (21).
Figure 15(a) shows the original input image. With the shutter

being on and AOM1 oriented at the angle of 135° in the second
quadrant in the xy plane, we see that the first-order differentia-
tion operation is performed along the 135° angle, as shown in
Fig. 15(b). At the angle of 45° in the first quadrant, processing
is missed. The physical reason is that sound waves propagate
along the 135° angle, and hence the 2D image is only processed
along this direction. Now, with the operation realized by
Eq. (28), where one AOM is along the x direction and the other
along the y direction, we have isotropic filtering, and a full circle
appears, as shown in Fig. 15(c). The configuration in Fig. 14 is
quite general in that we can perform anisotropic edge extraction
by blocking off one of the arms of the interferometer or perform
isotropic edge extraction if the full interferometer is employed.

6.2 Off-Bragg angle incidence

We consider the angular misalignment of the AOM by letting
ϕinc = −�1� δ − Δδ�ϕB = −�1 − Δδ�ϕB � δϕB, where Δδ

Fig. 13. Intensity of the zeroth-order light |ψ0
(2)(x

0
, y

0
)|2 at the exit of the cas-

cade AOM system.

Fig. 14. Dual AOMs in a Mach–Zehnder interferometer.

Fig. 15. (a) Input, (b) image processing by a single AOM, and (c) image
processing by dual AOMs in a Mach–Zehnder interferometer realizing the
computing operation given by Eq. (28).
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represents the amount of deviation from the exact Bragg angle
incidence. We call this angular deviation the tilt angle, Δδ. In
other words, when Δδ = 0, the input image is incident exactly
at the Bragg angle. With ϕinc given above, the zeroth-order
transfer function, from Eq. (16a), becomes

H0

�
k 0
xΛ
π

− Δδ
�
, �29�

as δ has been replaced by δ − Δδ in Eq. (13a). This simply means
that the transfer function is shifted from k 0

x = 0 to a new center
given by

k 0
c =

Δδπ
Λ

: (30)

The highpass characteristic of the zeroth-order transfer func-
tion shown in Figs. 7(a) and 7(c) has become a single-sided
notch filter with the center frequency given by Eq. (30). The
amount of shift depends on the tilt angle. Figure 16(a) shows
the image of a 1D chirp grating t�x,y� = 1� cos�100x2�, and
Fig. 16(b) shows a normalized intensity of the line trace across
the red line in Fig. 16(a).
ForΔδ = 0.15, i.e., the tilt angle is 0.15ϕB away from the exact

Bragg angle incident, Fig. 17(a) shows the spectrum of the chirp
grating and the shifted zeroth-order transfer function for Λ =
0.01mm with Q = 100 and α = π. Figure 17(b) shows the proc-
essed chirp grating. Note that the part of the image that has been
processed shows a dark and blurry area compared to the rest of
unprocessed area. Figure 17(c) shows a line trace across the red
line of Fig. 17(b).
Figures 18(a) and 18(c) show the processed chirp grating

for Δδ = 0.2 and Δδ = 0.25, respectively, and, in Figs. 18(b)
and 18(d), we show the line trace across Figs. 18(a) and 18(c),
respectively. In general, by comparing Figs. 17(b), 18(a), and
18(c), we observe that the “dark band” moves to the right of
the image as we increase the tilt angle.
While single-sided notch filtering has been previously inves-

tigated[13], it was not without a special consideration to the
AOM. With the consideration of off-Bragg angle incidence,
we simply need to provide a slight tilt to the AOM. Notch

filtering provides the elimination of noise that exists in a narrow
band.

7. Concluding Remarks

We have reviewed Bragg processing using AOMs for real-time
programmable spatial filtering. In the review, we have discussed
the fundamentals of acousto-optics, which is followed by the
summary of the multiple plane-wave theory. From the theory,

(a) (b)

Fig. 16. (a) Image of a 1D chirp grating and (b) line trace across the red line in
(a).

(a)

(b) (c)

Fig. 17. (a) Spectrum of the chirp grating and shifted zeroth-order transfer
function for Δδ = 0.15, (b) processed chirp grating, and (c) line trace
across (b).

(a) (b)

(c) (d)

Fig. 18. Processed images for (a), (b) Δδ = 0.2 and (c), (d) Δδ = 0.25.
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we have discussed the concept of the acousto-optic transfer
function, leading to the applications of spatial filtering. We have
then given some illustrative examples on how to implement
some of the optical computing operations. Finally, we havemen-
tioned a couple of state-of-the-art considerations that would
enhance the processing capabilities of Bragg processing. The
first consideration is the use of AOMs within a Mach–
Zehnder interferometer to perform the summation of two par-
tial differentiation operations. Conceptually, theMach–Zehnder
interferometer system is elegant. However, practical implemen-
tation of the idea is quite challenging, as we need to carefully
align the two images for summation. In the second considera-
tion, we have looked at the situation when the incident angle
is not exactly at the Bragg angle, thereby introducing the tilt
angle. The tilt angle gives rise to single-sided notch filtering
or half-plane filtering[35–37], which may well be worth looking
into further. The use of incident light beam at twice the Bragg
angle is another way to provide single-sided notch filtering[38].
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